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ABSTRACT

For rapid crack propagation in an elastic perfectly-plastic material,

explicit expressions have been obtained for the dynamic strains on the

crack line, from the moving crack tip to the moving elastic-plastic

boundary. The method of solution uses power series in the distance to

the crack line, with coefficients which depend on the distance to the

crack tip. Substitution of the expansions in the equations of motion,

the yield condition (Huber-Mises) and the stress-strain relations, yields

a system of nonlinear ordinary differential equations for the coefficients.

These equations are exactly solvable for Mode-III, and they have been

solved in an approximate manner for Mode-I plane stress. The crack-line

fields have been matched to appropriate elastic fields at the elastic-

plastic boundary. For both dode-Ill and Mode-I plane stress, the plastic

strains, which depend on the elastodynamic stress intensity factor and the

crack-tip speed, have been used in conjunction with the crack growth

criterion of critical plastic strain, to determine the relation between

the far-field stress level and the crack-tip speed.
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1. Introduction

At high crack-tip speeds the mass density of a material affects the

fields of stress and deformation in the vicinity of a propagating crack

tip. For essentially brittle fracture, near-tip dynamic effects have

been investigated extensively on the basis of linear elastic fracture

mechanics. By now, several papers have reviewed the computation of

elastodynamic stress intensity factors, and they have discussed dynamic

effects on the fracture criterion of the balance of rates of energies,

see Achenbach (1), Freund (2) and Kanninen (3). The combined effect of

plastic deformation and mass density on near-tip fields has not yet

received that much attention. This is not surprising, considering the

difficulties that are encountered in the quasi-static analysis of fields

near a growing crack in an elastic-plastic material.

For quasi-statically growing cracks the asymptotic structure of

near-tip fields in elastic perfectly-plastic solids has been analyzed in

considerable detail. A recent review by Rice (4) includes a general

formulation, and it presents detailed results for isotropic materials of the Huber-

Mises type. In general, the analytical near-tip results must be supple-

mented by numerical calculations to determine certain arbitrary functions

that appear in the asymptotically valid near-tip results.

In recent papers, Achenbach and Dunayevsky (5) and Achenbach and Li (6)

have constructed quasi-static solutions that are valid on the crack line,

from the moving crack tip up to the moving elastic-plastic boundary.

1



These solutions were obtained for an elastic perfectly-plastic material of

the Huber-Mises type by expanding all fields in powers of the distance,

y, to the crack line. Substitution of the expansions in the equilibrium

equations, the yield condition and the constitutive equations yields a

system of simple ordinary differential equations for the coefficients

of the expansions. As shown in (6), the resulting equations are exactly

solvable for the Mode-III case, and they are solvable for the Mode-I plane-

stress case if it is assumed that the cleavage stress is uniform on the

crack line. By matching the relevant stress components and particle

velocities to the dominant terms of appropriate elastic fields at the

elastic-plastic boundary, the plastic strains on the crack line were

computed in terms of the elastic stress intensity factor.

The literature on dynamic effects in the presence of elastic-plastic

constitutive behavior is growing. Investigations of the asymptotic

structure of the dynamic near-tip fields were presented by Slepyan (7)

and Achenbach and Dunayevsky (8). Dynamic near-tip effects for a strain-

hardening material were investigated by Achenbach and Kanninen (9) and

Achenbach, Kanninen and Popelar (10) on the basis of J2-flow theory and

a bilinear effective stress-strain relation. For Mode-Ill crack propa-

gation in an elastic perfectly-plastic material, exact crack-line solutions

were obtained by Achenbach and Dunayevsky (11) and Freund and Douglas (12).

In the present paper the expansion technique of Achenbach and Li (6)

is extended to the dynamic formulation, for rapid crack growth in Mode-III

and in Mode-I plane stress. Systems of nonlinear ordinary differential
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equations have been established which are valid for the transient case.

Solutions have, however, been obtained only for the steady-state dynamic

crack line fields. The equations for the Mode-Ill case can be solved

rigorously in implicit form. An approximate approach which gives

excellent results for the Mode-III case has, however, also been developed.

The equations for Mode-I plane stress cannot be solved rigorously, but

the approximate approach can be used to yield the steady-state dynamic

cleavage strain on the crack line. The plastic strains on the crack line

have been used in conjunction with the crack growth criterion of critical

plastic strain to determine a relation between the far-field stress

level and the crack-tip speed.

The geometry is shown in Fig. 1. The x3-axis of a stationary coordinate

system is parallel to the crack front, and x1 points in the direction of

crack growth. The position of the crack tip is defined by x1 = a(t).

A moving coordinate system (x,y,z) is centered at the crack tip, with its

axes parallel to the xl,X2 and x3 axes.
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2. Mode III Crack Propagation

In this Section an exact steady-state dynamic solution is derived

which is valid on the crack line in the plastic loading zone ahead

of the propagating crack tip.

In the moving coordinate system the equation of motion is

3T 3Tx z + yz . P (2.1)
ax ay

wherew(xyt) is the anti-plane displacement, and the material time

derivative is defined as

C) - (a/at) - (a/ax) (2.2)

Here a - da/dt is the speed of the crack tip. The Huber-Mises yield

condition requires

2  2  k2 (2.3)
xz yz

where k is the yield stress in pure shear. The strain rates are

M w I l- y = yz a" (2.4a,b)
£xz 2ax ~ yz 2a

The strain rates are related to the stresses and the stress rates by

xz + AT , £ + AT (2.a,b)xz 2u xz yz 2U yz

In (2.ab) u is the shear modulus and A is a positive function of

time and the spatial coordinates.

Solution aioKn the crack line.

In this paper we are interested in solutions along the crack line

y - 0, 0 < x < xp, where x - xp defines the elastic-plastic boundary.

Such solutions can be obtained by considering expansions with respect

to y in the region y/x -< 1:
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I = so(x,t) + s.9 (x,t)y
2 + O(y4 ) (2.6)

Y?. 0

T -- T1(x,t)y + O(y3 ) (2.7)

I= i(x,t)y + 0(y 3 ) (2.8)

= (X,t) + A2 (x~t)y
2 + O(y 4 ) (2.9)

In (2.6)-(2.9) we have taken into account that Tyz and A are

symmetric with respect to y - 0, while T and * are antisymmetric.

Substitution of (2.6)-(2.9) into (2.1), (2.3) and (2.5a,b), and

collecting terms of the lowest orders in y yields

+ 2s2 =Pl (2.10)

s 2  k2  2sOS2 + x 1 0 (2.1la,b)

1 2

- + Aot i A (2.12a,b)
2 it ?u o 1 0 0

It follows from (2.11a) that a 0 k. Elimination of s2 from (2.10)

and (2.11b) gives

a-t T 2
1 1 PU 0 (2.13)
ax k p 1

Similarly, A can be eliminated from (2.12a) and (2.12b) to yield0

x 0 (2.14)

Equations (2.13) and (2.14) define two coupled nonlinear partial

differential equations. Analytical solutions to these equations,

which would give the transient fields on the crack line, have not

yet been obtained.
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Equations (2.13) and (2.14) must be supplemented by conditions

at the elastic-plastic boundary E. These have been discussed in some

detail in Appendix A, where it was shown that for conditions which may

be assumed to hold ahead of a propagating crack tip, the stresses are

continuous at E, see Eq.(A.24a,b). From the impulse momentum relation

(A.3) it follows that the particle velocity is then also continuous.

Near the crack line at x - x we can then write:
p

[[so0] - 0 , [[T1]] = 0 and [1] = 0 , (2.15a,b,c

where the notation for discontinuities is defined by Eq.(A.1).

The governing equations for the quasi-static case follow by

setting p E 0. The resulting system of coupled nonlinear ordinary

differential equations can be solved. The quasi-static solution for

1 has been given in Ref.(5).

For the steady-state case the material time derivative (2.2)

reduces to

') - A (d/dx) (2.16)

where A is now a constant crack tip speed. We define

,and henceW - ayl (2.17ab)

and we note that (2.14) and (2.13) then may be written as

dy1  1 dT1 1
dx p dx k 1 rl "O (2.18)

d1 1 dd 1 (2.19)
dx k dx

L .. .. ... _ _ _ 
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where the Mach number M is defined as

11
H = /(V/p) . (2.20)

For small values of y (i.e., y/x << 1) the plastic fields in the

loading zone will be matched to the dominant terms of the elastic

fields. In polar coordinates R, centered at point E, and for small

values of the angle *, the dominant terms of the solution on the elastic

side of the elastic-plastic boundary are taken as

w ( ) KIII K , i f shear modulus (2.21)

211T 11

TZ- TiR) KII pZ fR KIII (2.22a,b)

Here the elastic stress-intensity factor K11 I depends on H. The

angular dependence on M enters in higher order terms of *. It should

be noted that the center of the elastic field is not taken to coincide

with the crack tip. The center is located at a moving point E. The

geometry is shown in Fig. 1.

Since T is continuous at y = 0, x - x , see Eq.(2.15a), we findyzp

1

-i KIII k , or Rp = (K1 11)
2/27k 2  (2.23a,b)

where R - R defines the radius of curvature of the elastic-plastic
p

boundary, at least for small values of 4. Another condition is that

T (i.e., the shear stress in the R,* system) should be continuous

at the elastic-plastic boundary. We find by using (2.6) and (2.7)

TRa T x cos* + Ty z sin* z T1y + k* (2.24)



Thus, by the use of (2.22a) and (2.23a)

T ~y + kO = i-P (2.25)

Since* y/R ,we obtain at x= x
p p

T., k/2R p (2.26)

Continuity of at x =x p which follows from (2.15c), yields

aw I aw 1
~'l-Z k~ (2.27)

or

Y k/21lR (2.28)

where (2.23a) has been used. For completeness we list the condition

on the strain 3w/Dy at x = x

aw = k (2.29)
y ay -

Equations (2.18) and (2.19) can be solved rigorously, as shown

in Appendix B. It is, however, of interest to note that an asymptotic

solution for small values of x can be obtained with minimal effort.

Let us consider solutions of the general formi

T 1x 1 Y- /x (2.30a,b)

Substitution in (2.18) and (2.19) yields

k (l±M) , y - (l±2A)k/pMt (2.31a,b)

Since we must have yj< 0, we discard the solution containing the

pluis signs. Hence



1 k(l-M) k I-M I (2.32a,b)x ' 71l i Mx3a bx V M x

Since - 3Yy /x, we also have

' k 1-M
Y y M n(X/X (2.33)

This solution is the same as the one derived earlier by Slepyan (7),

see also Achenbach and Dunayevsky (8). Note that T1 reduces to the

quasi-static solution as M - 0. The strain y has, however, not only
y

the wrong behavior in x, but actually becomes singular in M.

As shown in Appendix Bthe solution to Eqs.(2.18) and (2.19) which

k satisfies the boundary conditions (2.26) and (2.28) at x x is
p

defined by the following equations:= / 1  \(]-M)/2M

I 1-M 1/2M M (-2F - (3k/2 = - I+-M M i~i (IM/ (2.34)
k/2R P 1+M (l-M2) (2F + (1+M)/2M

where

I4k dtI
F('l) 2 - - d1 (2.35)(T I

Y1 - - - [-k(l-M2) L __ + 11  (2.36)

uM2  T2 dx

Equation (2.34) gives F as a function of TV• Integration of (2.35)j then yields

x -Fkd + x (2.37)
2 -k/2R C2 F(&) P

L • "_,. 
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Equation (2.37) yields TI as a function of x and xi. Substitution of

the result in Eq.(2.36) yields -i" By letting I ' in (2.37) we obtain

a relation between x and R . From y1 /"x, we finally find
p p y

x

yY k+ f yIdx k+ yp (2.38)

x y
p

The strain y obtained from (2.38) is the exact solution on the crack
y

line. This solution is equivalent to the one obtained earlier by

Dunayevsky and Achenbach (8) , and Freund and Douglas (12). It can

be shown that for small x, Eq.(2.38) reduces to (2.31b). In the

limit M - 0, (2.38) reduces to the quasi-static solution

k y in(xx ) ) + n 2 (2.39)

An explicit analytical expression for y y, albeit an approximate

one, would be very useful for applications in conjunction with the

crack growth criterion of a critical plastic strain. Another reason

for an approximate approach to the Mode-Ill case is that the results

can be tested by comparison with exact results. The same approach

can then be used for the Mode-I plane-stress case, which is not

amenable to an exact solution.

An approximate approach is suggested by the structure of Eqs.(2.18)

and (2.19). If an acceptable approximation to 1 would be available

a-priori, then (2.18) would simply be a linear ordinary differential

equation for yI" A first approximation to T I is suggested by (2.32a),

10

L



namely, -c = -k(l-M)/x. This expression has the correct limits at

M = 0 and M = 1. A better result is obtained by adding a constant

term

1 M
Ti = - k(l-M)[x +  M-'- (2.40)

p

The second term is chosen so that (2.19) is satisfied up to order

O(M) near x = x . Figure 2 shows a comparison between (2.40) and
P

the exact result. Equation (2.40) can now be substituted in (2.18),

and the resulting equation can be solved rigorously for y1. The

strain Yy = k/p + y then follows from (2.38). In anticipation of
y y

difficulties with the Mode-I case, we elect, however, to solve y1 by

using a perturbation solution which ignores terms of order O(M2 ).

The corresponding expression for y is obtained as
Iy

P (-M)(2-3M P2 ) -( - x + M(l-M)

ky x p M(2-M4M2 ) [Mx p 2(1IM)( x p2(14K)I

-- M n(-) +ll-M)(-- - 1) (2.41)
P P

It is of interest that (2.41) yields (2.33) in the limit x 0 0,

while it yields the quasi-static solution (2.39) as M 0, 0

provided that

x
M Ln(-) << 1 (2.42)

xP

A comparison of (2.41) with the exact result is shown in Fig. 3.

11
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Application of the boundary condition (2.26) to the approximate

expression for T1 . yields a relation between x and R . Subsequent
p p

use of (2.23b) gives
12

= (l-M)(l+2M) L (Kill/k)2  (2.43)

In Ref.(12), Freund and Douglas use numerical results of a finite

element analysis to derive

x = (0.295 - 0.5M2)(Klll/k)2  (2.44)P

For arbitrary M we cannot obtain an exact analytical expression for xP

as a function of K II/k from (2.34)-(2.37). However, as M -+ 0, we find

x = (2-6M2) -(K ll/k)2  (2.45)
p 211

Figure 4 shows a comparison between (2.43), (2.44) and the exact

relation, which follows from (2.34)-(2.37).

Finally, following Freund and Douglas (12) we apply the crack growth

criterion of critical plastic strain to determine the value of KI11 that

would be required for crack growth at a given value of M. The crack-

growth criterion, originally proposed by McClintock and Irwin (13),

states that the crack will grow with (normalized) plastic strain

(L/k)p. Y fat x xf on y = 0. For plastic strain below yf at x -

the crack cannot grow. As discussed by Rice (14) the characteristic

length Xf is related to K , the value of the Mode III stress intensityc

factor which is required to satisfy the fracture criterion for a stationary

crack, by the relation

12



Txf(Yf+l) = (Kc/k) 2 
, or xf = (Kc/k) 2 /(Yf+l) (2.46a,b)

We can now compute yf from (2.41) by substituting xf for x. Subsequent

elimination of x by the use of (2.43) yields
p

kf = yp(E) (2.47)

where the functional form of yP is given by (2.41), and the argument
y

is

= 2(K /i I ) 2 /Cyf+l)(l-M)(2+M)] (2.48)

For three values of yf, the relation between KIII/Kc and M given by

(2.47) has been plotted in Fig. 5, and compared with the exact relation.

The elastodynamic stress intensity factor KI]: is the dynamic factor.

4 jIt is related to the corresponding quasi-static factor, see Ref.[l, p.35]

by the relation

K (1-M)(K ) (2.49)=I (Klllqs

Equation (2.49) implies that remote load, to attain a high crack tip

speed is actually even higher than would follow from (2.47), because the

external load is contained in (Kiii)qs.

13



3. Mode-I Crack Propagation in Plane Stress

We consider a state of generalized plane stress, hence oz , axz and

a vanish identically. Relative to the moving coordinate system theyz

equations of motion are

aa aT 3T 3a
x + y= -- xY + --Z p (3.1a,b)

3x ay ax y

The Huber-Mises yield condition becomes

2 + 02 - a a + 3T2y 3k2 , (3.2)
x y x y xy

where k is as in Eq.(2.3). The strain rates are

=a C, J a '.+
= a- y a y xy y (3.3ab,c)

x 2kxy y 7y y y x/

The strain rates are related to the stresses and stress rates by

ad 1 . v6) (a
• E x - y + (2a -a) (3.4)

a 1 . 1 (35)y"V6 " (y- ) + -- Q o xa (3.5)

ay E y x 'A2 -a)

13 axy + A (3.6)
2 ay +x) E xy xy

where E and v are Young's modulus and Poisson's ratio, respectively,

and A is a positive function of time and the spatial coordinates.

Solution along the crack line

Analogously to (2.6)-(2.9) we consider

ax p o(xt) + P2(xt)y2 + P4 (X,t)y4 + O(y6 ) (3.7)

14
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o f q (x,t) + q2 (x,t)y
2 + q4 (x't)y' + O(y6) (3.8)

T = s 1 (Xt)y + s 3 (x't)y3 + O(y5) (3.9)

Ufi (x,t) + 2 (x,t)y
2 + O(y4 ) (3.10)

1 (x,t)y+ %3(xt)y3 + O(y 5 ) (3.11)

A A 0o(xt) + A2 (xt)y
2 + O(y4 ) (3.12)

Here we have taken into account that a , a , u and A are symmetric withx y

respect to y - 0, while T and 0 are antisymmetric. Substitution ofxy

(3.7)-(3.9) into (3.1a,b) and collecting terms of the same order in y

yields

3-P Sl ffi 2~' + 3s3 4 U (3.13a,b)

as 1s 3
axp#- 2qv2 4 ax + 4qv4 P 3 (3.14a,b)

Substitution of (3.7)-(3.9) into the yield condition (3.2) yields by the

same procedure

p 2 + q2 - pqo 3k2  (3.15)
o 0 00

(2p -q )p + (2q -P )q + 38s - 0 (3.16)
0o02 0oo2 1

p2 + (2pq)P+ q2 + (2qo-Po)q 4  p2q2 +6s (3.17)
P2 (20-o)P4 q2 0 0 4(3.171)

Another 5 equations are obtained by using (2.16) and (3.7)-(3.10) in

(3.4)-(3.6). These equations have been listed as Eqs.(21)-(25) by

15
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Achenbach and Li (6), and they are not reproduced here.

At this stage we have 14 unknowns and 12 equations. Clearly, the

system cannot be solved without further simplifying assumptions. For the

quasi-static problem (i.e., p )Pone assumption, namely that q0  constant,

suffices to produce a solvable system of equations, as shown by Achenbach

and Li (6). For reference purposes we state the coefficients for the

quasi-static stresses obtained in (6)

Po=k p 3 k (3.18a,b)

=oM2k ,q 2 0 (3. 19a ,b)

s = 0 a k (3.20a,b)

1 3

An approximate solution can be obtained f or the steady-state dynamic

problem, when ()=-id/dx. Equations (3.13)-(3.14) then become

dp 02d'~u 0 dp2  d'u2
+ a 2 0 , -Z+ 3s = 2 E 2 (3.21a,b)

dx +1 dx.2  dx 3 dx 2

ds1  dv ds d
-+ E2 1 3 d2 v3

whrd:=is+:2q 2 as 2 dx + 4q4 d2 nw(3.22a,b)

jx 16

whr M isdfinda



-jdq2  2 -) + ~ (2p.-q) (3.25)

dx 2  TEd i dx 3 dx ~ ~ 2  -c-

dv 1 dq dp dA

dx ro (q-o (3.26)

dv d p Ad
d3 1 : d 2 ) + 0 2 i dA p) (3.27)
3--- d d 3 dx (2 20

du 2 d 2V 1 1 ds 1 dA
2~ -1+ S, (3.28)

2x dx~ 2 E dx dx 1

To determine a solution to Eqs.(3.15)-(3.17), (3.2l)-(3.22) and

(3.24)-(3.28), we start by making the same assumption as for the quasi-

static case, namely, that qo M constant. A second assumption is that

2p- q0  e , where e e (M), but e << k. It then follows from (3.15)

that

P - k + 0(c), q0  2k + 0(e-;), 2q -po M 3k + 0(e), 2p 0-qo = 0(E:) (3.29a,b,c,d)

Since both p 0and q 0 are constant, Eq.(3.26) implies that dA 0/dx

(1/k)dv 1/dx + 0(E), and it subsequently follows from (3.24) that

u/dx2 -. 0(c). Substitution of these results in (3.21a) gives s1  _ (M 2)

while (3.22a) gives q 2 _ 0(M2) . Next, we conclude from (3.16) that

ep 2 + 3kq 2 + O(e
2M') - 0, which implies that C _ 0(M2 ) . Application of the

preceding results to (3.17) gives q4 - (1/3k) p2 + 0(M2 ). Substitution of

the latter result in (3.22b), and then in (3.21b) yields

4 d + 24EH 2....2. + 0(M2) (.0
j p + (3.30)~d~c

17



Note that the inertia term has not been neglected in this equation,

since it provides a coupling with equations for u2. Substitution of

s - O(eM2 ) - O(M4) into (3.28) yields

du2 d d2Vl2 + - O(M )  
(3.31)

dix 2 dxZ

Finally, by using (3.31), as well as (3.29) and dA /dx - (i/k)dv /dx,

Eq.(3.25) gives

I d3V 1  dP2  2 dvl

+. _ W2 O(M) (3.32)
2 dx3  E dx 3k dx 2 )

In a further reduction we ignore the terms of 0(M2 ), and we eliminate

u2 by the use of (3.31), to obtain

dP 2  4 2 +3Vlx
-2 + j" P2 2" -- -. 0 (3.33)

dxz k 2 2 dx3

1 d2Vlx 2 1 dP2+3k P2 vx + E d" _ (3.34)2 dx2  -- 0

where

V -x " dvI/dx (3.35)

Equations (3.33)-(3.34) will be used to analyze the Mode-I plane-stress

fields.

The solutions for vlx and p2 must satisfy certain conditions at the

elastic plastic boundary E. In Appendix A it was shown that for conditions

which may be assumed to hold ahead of a propagating crack tip, the

stresses are continuous at Z , see Eq.(A.31). From the impulse momentum

relation (A.3) it then follows that the particle velocity is also continuous

at Z.

18



For y/x << 1 the plastic fields in the loading zone will now be

matched to the dominant terms of the elastic field. In polar coordinates

R,q, centered at point E, the elastic field for small values of 4 is taken

as

= 1 n 7 9n 2
x =(-) KI{(1 - ( - (3.36)

1 n 5 9ni )2
oy = (-) K ((1 + D-) + (8-5 } (3.37)y 7rR I 2R 8 16R

y (-iR) K (1- -- (3.38)
xy 1t 12 4R"

R ) 1 )2} (.9

[ () L K1 {(K -1 +) + .1(5 - K -(339)

v R ) K (K - i+-), , (3.40)

2vt i I 2R

where K = (3-v)/(l+v). This elastic field has one more parameter, namely n,

than the usual elastic crack-tip field. Equations (3.36) - (3.40)
1

actually correspond to the field for a notch with I as its tip-radius

of curvature, see Creager and Paris (15). The elastic stress-intensity

factor K depends on M, but the angular dependence on M enters in higher

order terms of *. The center of the elastic field is located at the moving

point E.

Since the stresses a and a are continuous at 0 -0, we find from

(3.29a,b) and (3.36)-(3.37)

T' 2 k, 2i Xia + 2k (3.41a.

p p p p

tJ€,19



where R R p defines the radius of curvature of the elastic-plasticP

boundary, at least for small values of *. From (3.41ab) we obtain

n/R = 2/3. Substitution of this result in (3.41a) yieldsP

1 3

2- ) KI =k. or R = (4/9)(K /k)'/2n (3.42ab)
p

For small values of y/x and , we next consider the continuity of

TRV and aR . We use

TR = (cos2  -sin2 ) axy + (a y-a x)sinpcos* (3.43)

oR = 2OxySin~cos* + aXCos2 + ysin2 , (3.44)

in conjunction with (3.36)-(3.38) and the stresses in the plastic zone.

It may be verified that TR* is contintious to first order in V . The stress

a R is continuous to order unity by virtue of Eq.(3.42). Collecting terms

to order y2 and ii yields the relation

x M x : P2 A- (3.45)
4R

Next, we consider the continuity of the particle velocity at small

values of *. We use

U =cos* - 6sin* (3.46)

UR O *sin + icos* (3.47)

20
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Since [6z] - 0 and [ R I 0 , we find from (3.46)-(3.47)

[f]cos* - [a]sinp - 0 (3.48)

[f]sin* + [a]cos i 0 (3.49)

Substitution of (3.1l)-(3.12) into (3.48)-(3.49) and collecting terms of

the same order in y yields

[0i, [ 1 ]- [012] =0 (3.50a,b,

By the use of (3.39)-(3.40), we then obtain

3kA . 3(2+v)kxfx p -:E1 R af  A 2 2 (3.51a,b)
p 1 2ERp 8ER2

where (2.16) has been used. For the steady-state problem (3.51ab) imply:

dvl5

x=X : l -3k/2ER, -i- - 3(2+v)k/4ER2

It appears to be difficult to solve (3.33) and (3.34) rigorously. Just

as for the Mode-III case, an asymptotic solution for small values of x can,

however, easily be obtained by considering solutions of the form

P2  2/x' Vl lx (3.53a,b)

The appropriate constants follow from (3.33)-(3.34) as

P2 - (3k/2)(1-M), Vx = (-3k/E)(1-M)/M (3.54a,b)

The corresponding strain y isY

CJ E - x (3.55)

p
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In the limit M 0 0, p2 reduces to the quasi-static solution given by

Eq.(3.18b), but c becomes singular.
y

The similarities in the structure of the equations for the Mode-III

and Mode-I plane stress cases suggests an approximate approach to

(3.33)-(3.34) similar to the one used for solving (2.18) and (2.19). Thus,

if an acceptable approximation to P2 would be available a-priori, then

(3.34) would be a linear ordinary differential equation for vlx. A first

approximation to p2 is provided by the asymptotic expression (3.52a). This

expression has the correct limits at M - 0 (quasi-static case) and M = 1.

It may, however, be expected that a better approximation will be obtained

by adding a constant term and use

FL.-)[ M (3.56)

p

The second term is chosen so that (3.33) is satisfied up to order O(M)

near x - x . It is noted that (3.56) is completely analogous to (2.40).~p

Substitution of (3.56) into (3.34) yields

I d2Vlx (1-) 3k-M (357)
2 dx2 Vx22 x2 lx Ex'

p

An expression for xp is obtained by enforcing the condition (3.45) on p2

x = [(l-M)(2+M)1 ] (3.58)

A solution to (3.57) Is obtained by using a perturbation solution which

neglects terms of order O(M 2). By integrating the result, the strain

C - vI is obtained as

y
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y = (y)P + EP(x/x ,M), where (C ) (k/E)(2-v) (3.59a,b)

y y PB y p y PB

,A, I~a0 1+3+

[P(X/xpM) = (_[ ) p  - + -l 3 + - 1) ]

2 p 2L p p

Also

I - [l + (9-8M) 1  , -1 (9-8M)%1 (3.61)

81 M(1-M) 82 M(1-M) (3.62a,b)

2[2+(9-8M) ] 2[2-(9-8M) ]

A 3[(l-M)(2-M) - (a.. 3[(l-M)(2+M) (2+v) x. 2] (1+82) (3.63)A1 M -RJ 2 2 2+2 2 L M - 2 (e
p p

2  _3[(I-M)(2+M) 2+ (+8)- 3 [(1-M)(2-M) _ j]l(alxal~l+281) (3.64)

a - a 12 -al) (1+8 1 +8 2+8 1 82 ) + 2(82-81) (3.65)

Here x p/Rp is given by (3.58)

Equation (3.60) reduces to the quasi-static solution, which has been

given by Achenbach and Li (6,Eq.(64), provided that Mtn(x/x) << 1. In

p

the limit x - 0, (3.59) reduces to (3.55).

Numerical results for c as given by (3.59) are shown in Fig. 6, for
y

v - 0.3 and M - 0.1, 0.3, 0.5. The quasi-static solution has also been

shown in Fig. 6.
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Finally, just as for the Mode-Ill case, we apply the crack growth

criterion of critical plastic strain to determine the value of K that

would be required for crack growth at a given value of M. For a

stationary crack the quasi-static plastic strain follows from the results

of Refs.(5) and (6) as

p(X/x = B2  - C2"-2 3 (2+V) (3.66)
P

where

B = (K+5) + (K+I)V2](E/j) (3.67)
2 16

C2 = L [-(K+5) + (K+l)2V2](E/) (3.68)
2 16

The constant K is defined as K = (3-v)/(l+v). Note that ep properly
y

vanishes at the elastic-plastic boundary.

Now suppose that the normalized critical strain

Cf (E )cr/REy)PB (3.69)

is reached at x f xf, for a value of KI  K i. The corresponding value of

x is given by Ref.(6,Eq.(57)) asP

2V21 ( )2 (3.70)

pc 9 T Ic

A cubic equation for x f/x follows from (3.66). The relevant real-

valued root is

xf/X P S (3.71)

where
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S = (B2/C2+A) - (A-B2/C2) (3.72)

+l 1 ") + (E/k)ef/3 ~A = {(B2/C2)2 + c1+ (Ek 113
(B/ 2+2 f } (3.73)

Next we turn to (3.60), and we compute EP(x/x ,M) at f/x. Since

x is given by (3.58) we have
p

SY12 (cK (3.74)

(1-M) 11(2*M);

where (3.42b) has also been used. The crack growth criterion now yields

Ef = (.P(EM)/(Ey)pB (3.75)

where the function form of Ep is given by (3.60). Equation (3.75) has
y

been used to plot KI/KIc versus M for three values of cf in Fig. 7.
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Appendix A

Conditions at a Fast-Moving Surface of Strong Discontinuity

In a recent paper Drugan and Rice (16) have shown that all stress

components are continuous across a quasi-statically moving surface of

strong discontinuity in an elastic-plastic solid. They also showed that

the only components of strain which may suffer discontinuities across

such a surface are the plastic components which do not deform elements

in the plane of the surface, and these strains may be discontinuous only

if the stress state at the moving surface meets specific conditions.

In this Appendix we attempt to extend some of the results of (16),

to the case that the surface moves so fast that dynamic effects must be

taken into account. The results will serve to establish the conditions

at the leading edge of the elastic-plastic boundary of the plastic

loading zone ahead of a rapidly propagating crack tip, particularly in

the immediate vicinity of the crack line.

The propagating elastic-plastic boundary is denoted by E, see

Fig. 1. The surface propagates with velocity V in the direction of

the normal ti. The coordinate system ti' 2' 3 moves with the surface

E. A discontinuity of a field quantity, say g(4lF 2 , &3 ,t) is denoted

in the usual manner by

+ -

[[g] : g - g , (A.1)

where

Am0 g(ElE 2*F3*t a A) (A.2)
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where A > 0, and t is the time at which E arrives at a particular
a

material point. In the sequel Latin indices i,j,k have range 1,2,3.

Greek indices cz,O have range 2,3 only and thus refer to tensor comn-

ponents in planes parallel to planes that are tangential to E.

The impulse-momentum relation yields across E:

[I0 lj7 =1 P V tbI (A.3)

-'where P is the mass density. By virtue of displacement continuity we

have

[[u 1I] 0 (A.4)

It follows from (A.4) that, see e.g. Hill (17),

[[a~u/ac ] 0 (A. 5)
1 CL

M 1 I] Ma - V[~u/ac1 1 (A. 6)

By combining (A.3) and (A.6) there results

Ho = PV2[[;U i /a&1  (A.7)

Equations (A.5) - (A.7) have some implications for discontinuities

in the components of the small-strain tensor, Ci /ac + au /n)

We find

[[ [fau I/ac 1] -1 [a 11 11/PV
2  (A.8)

[ - D /a .[[o; ]/PV2 (A.9)lc [f0 1 J 1 - l

________________________



[[C l =1 0 (A. 10)

The total strain is taken to be the sum of elastic and plastic

parts

C, e + p(.1
ij =  ii + ij '(.I

where

e I1
e 1 - (k)6 (A.12)

i 2 ij k

By combining (A.8)-(A.10) with (A.1l)-(A.12) we find

11][ [al]] +(__ i) ([[o22]] 33

HEp 1 1 [[ 1pA.4

la 21lct-2 2 la

[fe 1] - [Ol]] + [[[33]]) (A.13)

HE p 11 Ha ]+- ua 1 (A.15)
[[0 ]  2P °aa E [[kk]]aa

Plastic deformation is assumed to obey the maximum plastic work

inequality

(o -ai j)dci > 0 (A.16)
ij i ii -

where aj is the stress state (at yield) corresponding to the plastic

strain increment dc , and a 0 is any other stress state which is at or
ii' ij

below yield. Following (16) we integrate (A.16) for a material point

during passage of the discontinuity surface E to obtain

Wp- f adcp > 0 (A.17)
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where o0 is understood to be a stress state at or below yield for all
ii +

states along the strain path from e to e . In the inequality (A.17),

Wp is the plastic work accumulated discontinuously at a material point

due to the passage of X:

Cp-
wP dijCde (A.18)

wPf ij ii

ii

Subsequent considerations are for the special cases of anti-plane

shear and generalized plane stress.

Anti-plane shear. This case is defined by u3=u3 ( 1 9, 2,t) 0, u u2 = 0.

The relevant relations between the strain and stress increments across

j Z follow from (A.14) and (A.15) as

23 2v 23

Substitution of (A.19) and (A.20) into (A.18) yields

(o3 + o3)[[Fe3I] - (023 + o23)[[3 1 (A.21)

For a 0 we now choose
ij

0 - o +

0 a 0 a0 (A.22)13 013 ' 23 23

The inequality (A.17) then yields

112 [ 1~ 2 >0 (A.23)
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If we restrict our attention to the sub-sonic case, for which

PV2/P < 1, it is evident that (A.23) can be satisfied only by

[[01311 = 0 and [[023]] = 0 (A.24a,b)

It remains to verify that the stress state (A.22ab) is sub-yield.

We should have (a13)2 + (o3) < k2 . Since the yield condition is

satisfied at the - side of E , we do have (a13)2 + (a23)2 = k . By

eliminating (a13)2, the requirement that the stress state (A.22a,b) is

sub-yield may then be written as

(23)2 - (023)2 < 0 (A.25)

For example, (A.25) is satisfied if

a23 > 0 , a23 > 0 and 2 3 >0 2 3  (A.26)

This is the case that generally applies at an elastic-plastic boundary

ahead of a crack tip propagating in Mode-III.

On the crack line a 3 -3 0, and, the expression for Wp given

by (A.21) simplifies to = - (2 3+ + O23)[[P3] ] . By taking

023 w 3 (which is by definition sub-yield), we then obtain that

-(1/2)[[o 23 ]] > 0 , which implies that on the crack line

[[02311 - 0 , (A.27)

without additional conditions.

Generalized plane stress. This case is defined by

33 - , 2 2( 1,F2 ,t) # 0, Oll(&,9, 2 ,t) 12 0, 01 - o2 1( l, 2,t) # 0.

The relevant relations between the strain and stress increments follow

from (A.13) and (A.14) as
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V2  dol + a do (A.28)11 2  E 11 E 22

= 1 do2

deP - do + da (A.29)
22 E 22 E 11

pV
de P 2 - d0.1 (A.30)

Substitution of (A.28) - (A.30) into (A.18) yields

wp  -. (o1+11 +0 E 1]a +a C]a+ (A.31
- 11( 0  )[ - (222+o12+ 1 2)

o

For co we choose

0 0 + a - (A.32)
01. ll 1 I022 22 12 12

The inequality (A.17) then yields

11 _ 1 1 1 ( [a ]_ )[[ 1] 2 > 0 (A.33)- 2 .(--- E')[[°'l]] - 2"E'[[22]] 2 2" iJV1

If we restrict our attention to PV2/U < 1, then (A.33) can be satisfied

only if

[all1]] - 0 . [(02211 - 0 and (H012]] - 0 (A.34 a,bo

The results (A.34a,bc) hold if the stress state (A.32) is indeed

sub-yield, i.e., if

+ 2 -+ )

(a11) + (a - 011022 + _ 3k (A.35)

Since the stress state all, 22 and 012 satisfies the yield condition,

(a-1) 2 + 3(0-2)2 can be exp~ressed in terms of (a-2)2 and a110a2

Substitution of that result into (A.35), reduces that condition to

31



(a+ + - - Ma ]< 0 (A. 36)
22 22 1 [22 0

This equation is satisfied if either

[-02211 < 0 and a 1 22 + '22 (A.37a,b)

or

[o22- > 0 and a - 022 + (A.38a.b)22o1> 11- '2 22

Of interest in the present paper are discontinuities across the

elastic-plastic boundary near the crack line, for Mode-I crack propa-

gation in generalized plane stress. For that case we have near the

+crack line 022>0 and a22 >0. We also have a11' k and a22 2k.crackline022 0 ad 22

Hence (A.37b) is satisfied. We will generally also have that

+a22 o22-, hence [[a22] ] ' 0, and (A.37a) is satisfied. Thus, (A.32)

is an acceptable sub-yield stress state, and the results (A.34a,b,c)

are valid. Note that on the crack line 012 0, and only [[a 11 0

and [((22]] 0 are relevant.
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Appendix B

Exact Solution to Eqs.(2.18) and (2.19)

First we introduct new variables

T = -T1 /(k/2R p) , r= l/(k/PRp), X x/R (B.la,b,c)

From Eq.(2.18) we then obtain

" L [(_H2 )F + 1] (B.2)

M
2

where

F = (1/T2)dT/dX (B.3)

Substitution of (B.2) into the dimensionless form of (2.19) yields by

the use of (B.3)

2 (1 -4 2(-H) E + T -F + 2 ET + -1 = 0 (B.4)

Equation (B.4) can be rewritten as

2M dT I-M I+M )dF (B.5)2 T- 1f  
F + I

F 2(+14M) 2(1-)

Integration of (B.5) gives

H n F 1-H 1- 1+ 11 (B.6)i2M~nT - Ln IC1 2F + 1 1l /12F + I I

where C is an integration constant.

At X - x /R (the elastic-plastic boundary) we have

T- 1 (B.7)
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Since r' at x - x p, it follows from (B.2) that at x x x

F = F p= _ (1+M42)/2 (1_142) (B.8)

By using (B.7) and (B.8) in (B.6) it then follows that

C = -M (M2 M (B.9)

Substitution of C in (B.6) gives

V17+ / (l12) [2F+l/(l-M)J (1414)/2M(B)
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Fig. 1. Geometry for a propagating crack tip, with
center of elastic field E, and elastic-plastic
boundary E.
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xix , according to Eqs.(3.59)-(3.60).
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